A Crowdsourcing Framework for On-Device Federated Learning

Federated learning (FL) rests on the notion of training a global model in a decentralized manner. Under this setting, mobile devices perform computations on their local data before uploading the required updates to improve the global model. However, when the participating clients implement an uncoordinated computation strategy, the difficulty is to handle the communication efficiency (i.e., the number of communications per iteration) while exchanging the model parameters during aggregation. Therefore, a key challenge in FL is how users participate to build a high-quality global model with communication efficiency. We tackle this issue by formulating a utility maximization problem, and propose a novel crowdsourcing framework to leverage FL that considers the communication efficiency during parameters exchange. First, we show an incentive-based interaction between the crowdsourcing platform and the participating client’s independent strategies for training a global learning model, where each side maximizes its own benefit. We formulate a two-stage Stackelberg game to analyze such scenario and find the game’s equilibria. Second, we formalize an admission control scheme for participating clients to ensure a level of local accuracy. Simulated results demonstrate the efficacy of our proposed solution with up to 22% gain in the offered reward.

Authors:
Pandey Shashi Raj, Tran Nguyen H., Bennis Mehdi, Tun Yan Kyaw, Manzoor Aunas, Hong Choong Seon

Publication type:
A1 Journal article – refereed

Place of publication:

Keywords:
Decentralized machine learning, federated learning (FL), incentive mechanism, Mobile crowdsourcing, Stackelberg game

Published:

Full citation:
S. R. Pandey, N. H. Tran, M. Bennis, Y. K. Tun, A. Manzoor and C. S. Hong, “A Crowdsourcing Framework for On-Device Federated Learning,” in IEEE Transactions on Wireless Communications, vol. 19, no. 5, pp. 3241-3256, May 2020, doi: 10.1109/TWC.2020.2971981

DOI:
https://doi.org/10.1109/TWC.2020.2971981

Read the publication here:
http://urn.fi/urn:nbn:fi-fe2020060440593