Band bending and valence band quantization at line defects in MoS2

The variation of the electronic structure normal to 1D defects in quasi-freestanding MoS₂, grown by molecular beam epitaxy, is investigated through high resolution scanning tunneling spectroscopy at 5 K. Strong upward bending of valence and conduction bands toward the line defects is found for the 4|4E mirror twin boundary and island edges but not for the 4|4P mirror twin boundary. Quantized energy levels in the valence band are observed wherever upward band bending takes place. Focusing on the common 4|4E mirror twin boundary, density functional theory calculations give an estimate of its charging, which agrees well with electrostatic modeling. We show that the line charge can also be assessed from the filling of the boundary-localized electronic band, whereby we provide a measurement of the theoretically predicted quantized polarization charge at MoS₂ mirror twin boundaries. These calculations elucidate the origin of band bending and charging at these 1D defects in MoS₂. The 4|4E mirror twin boundary not only impairs charge transport of electrons and holes due to band bending, but holes are additionally subject to a potential barrier, which is inferred from the independence of the quantized energy landscape on either side of the boundary.

Authors:

Publication type:
A1 Journal article – refereed

Place of publication:

Keywords:
band bending, mirror twin boundary, MoS₂, polarization charge, scanning tunnelling spectroscopy

Published:

Full citation:
Murray, C., van Efferen, C., Jolie, W., Fischer, J. A., Hall, J., Rosch, A., Krasheninnikov, A. V., Komsa, H.-P., & Michely, T. (2020). Band Bending and Valence Band Quantization at Line Defects in MoS2. ACS Nano, 14(7), 9176–9187. https://doi.org/10.1021/acsnano.0c04945

DOI:
https://doi.org/10.1021/acsnano.0c04945

Read the publication here:
http://urn.fi/urn:nbn:fi-fe2020090468594