Bayesian Learning Based Millimeter-Wave Sparse Channel Estimation with Hybrid Antenna Array

We consider the problem of millimeter-wave (mmWave) channel estimation with a hybrid digital-analog two-stage beamforming structure. A radio frequency (RF) chain excites a dedicated set of antenna subarrays. To compensate for the severe path loss, known training signals are beamformed and swept to scan the angular space. Since the mmWave channels typically exhibit sparsity, the channel response can usually be expressed as a linear combination of a small number of scattering clusters. Thereby the number of angles of arrival (AoAs) and angles of departure (AoDs) with significant signal components is limited, and compressive sensing techniques can be leveraged for estimating the channel. In this paper, we investigate two sparse recovery algorithms: a Bayesian and non-Bayesian one. In the Bayesian approach, we invoke the sparse Bayesian learning (SBL) framework, which relies on a 2-layer hierarchical prior model for channel. A highly efficient and fast iterative Bayesian inference method is then applied to the proposed model. The non-Bayesian approach is a LASSO-based approach, where we devise a low complexity solution by adopting alternating directions method of multipliers (ADMM) technique to solve the problem. The efficacy of the proposed algorithms is demonstrated using numerical examples. The Bayesian approach shows improved estimation performance in relation to the non-Bayesian approach.

Authors:
Aminu Mubarak Umar, Codreanu Marian, Juntti Markku

Publication type:
A4 Article in conference proceedings

Place of publication:
2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

Keywords:
compressive sensing, Millimeter-wave communications, sparse Bayesian learning, sparse channel estimation

Published:

Full citation:
M. Umar Aminu, M. Codreanu and M. Juntti, “Bayesian Learning Based Millimeter-Wave Sparse Channel Estimation with Hybrid Antenna Array,” 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, 2018, pp. 1-5. doi: 10.1109/SPAWC.2018.8445972

DOI:
https://doi.org/10.1109/SPAWC.2018.8445972

Read the publication here:
http://urn.fi/urn:nbn:fi-fe202002246195