Message passing-based link configuration in short range millimeter wave systems

Millimeter wave (mmWave) communication in typical wearable and data center settings is short range. As the distance between the transmitter and the receiver in short range scenarios can be comparable to the length of the antenna arrays, the common far field approximation for the channel may not be applicable. As a result, dictionaries that result in a sparse channel representation in the far field setting may not be appropriate for short distances. In this paper, we develop a novel framework to exploit the structure in short range mmWave channels. The proposed method splits the channel into several subchannels for which the far field approximation can be applied. Then, the structure within and across different subchannels is leveraged using message passing. We show how information about the antenna array geometry can be used to design message passing factors that incorporate structure across successive subchannels. Simulation results indicate that our framework can be used to achieve better beam alignment with fewer channel measurements when compared to standard compressed sensing-based techniques that do not exploit structure across subchannels.

Authors:
Myers Nitin Jonathan, Kaleva Jarkko, Tölli Antti, Heath Jr. Robert W.

Publication type:
A1 Journal article – refereed

Place of publication:

Keywords:
dynamic compressed sensing, hybrid beamforming, mm-Wave, Short range communication

Published:
11 February 2020

Full citation:
N. J. Myers, J. Kaleva, A. Tölli and R. W. Heath, “Message Passing-Based Link Configuration in Short Range Millimeter Wave Systems,” in IEEE Transactions on Communications, vol. 68, no. 6, pp. 3465-3479, June 2020, doi: 10.1109/TCOMM.2020.2973147

DOI:
https://doi.org/10.1109/TCOMM.2020.2973147

Read the publication here:
http://urn.fi/urn:nbn:fi-fe202003178305