Nanoparticle activated neutrophils-on-a-chip

Neutrophil granulocytes are the most abundant white blood cells in mammals and vital components of the immune system. They are involved in the early phase of inflammation and in generation of reactive oxygen species. These rapid cell-signaling communicative processes are performed in the time frame of minutes.

nn

In this work, the activity and the response of neutrophil granulocytes are monitored when triggered by cerium-oxide based nanoparticles, using capacitive sensors based on Lab-on-a-chip technology. The chip is designed to monitor activation processes of cells during nanoparticle exposure, which is for the first time recorded on-line as alteration of the capacitance. The complementary metal oxide semiconductor engineering chip design is combined with low temperature co-fired ceramic, LTCC, packaging technology. The method is label free and gently measures cells on top of an insulating surface in a weak electromagnetic field, as compared to commonly used four-point probes and impedance spectroscopy electric measurements where electrodes are in direct contact with the cells.

nn

In summary, this label free method is used to measure oxidative stress of neutrophil granulocytes in real time, minute by minute and visualize the difference in moderate and high cellular workload during exposure of external triggers. It clearly shows the capability of this method to detect cell response during exposure of external triggers. In this way, an informationally dense non-invasive method is obtained, to monitor cells at work.

Authors:

Publication type:
A1 Journal article – refereed

Place of publication:

Keywords:
Capacitive sensor, Cerium oxide nanoparticles, Complementary metal oxide semiconductor (CMOS), lab-on-a-chip, Low temperature co-fired ceramic (LTCC) packaging, Neutrophil granulocytes

Published:

Full citation:
Kalle Bunnfors, Natalia Abrikossova, Joni Kilpijärvi, Peter Eriksson, Jari Juuti, Niina Halonen, Caroline Brommesson, Anita Lloyd Spetz, Kajsa Uvdal, Nanoparticle activated neutrophils-on-a-chip: A label-free capacitive sensor to monitor cells at work, Sensors and Actuators B: Chemical, Volume 313, 2020, 128020, ISSN 0925-4005, https://doi.org/10.1016/j.snb.2020.128020

DOI:
https://doi.org/10.1016/j.snb.2020.128020

Read the publication here:
http://urn.fi/urn:nbn:fi-fe2020051229495